A Comparative Transcriptomics Approach to Analyzing the Differences in Cold Resistance in Pomacea canaliculata between Guangdong and Hunan

Pomacea canaliculata, known as an invasive freshwater snail, is also called a golden apple snail; its survival and expansion are greatly affected by temperature. In this study, high-throughput sequencing (RNA-seq) was used to perform comparative transcriptome analysis on the muscular tissue (G_M) of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Immunology Research 2020, Vol.2020 (2020), p.1-9
Hauptverfasser: Peng, Yuande, Wang, Zhi, Sun, Zhiying, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pomacea canaliculata, known as an invasive freshwater snail, is also called a golden apple snail; its survival and expansion are greatly affected by temperature. In this study, high-throughput sequencing (RNA-seq) was used to perform comparative transcriptome analysis on the muscular tissue (G_M) of snails in Guangdong and Hunan. Differential gene screening was performed with FDR 1 as the threshold, and a total of 1,368 differential genes were obtained (671 genes showed upregulation in snails from Guangdong, and 697 genes displayed upregulation in snails from Hunan). Fifteen genes were identified as candidate genes for the cold hardiness of Pomacea canaliculata. Among them, three genes were involved in energy metabolism (glycogen synthase, 1; DGK, 1; G6PD, 1); seven genes were involved in homeostasis regulation (HSP70, 2; BIP, 1; GPX, 1; GSTO 1, G6PD, 1; caspase-9, 1); two genes were involved in amino acid metabolism (glutamine synthetase, 1; PDK, 1); and four genes were involved in membrane metabolism (inositol-3-phosphate synthase, 1; Na+/K+-ATPase, 1; calcium-binding protein, 2). This study presents the molecular mechanisms for the cold hardiness of Pomacea canaliculata, which could provide a scientific basis for the forecast and prevention of harm from Pomacea canaliculata.
ISSN:2314-8861
2314-7156
DOI:10.1155/2020/8025140