On the Growth of Solutions of a Class of Higher Order Linear Differential Equations with Extremal Coefficients
We consider that the linear differential equations f(k)+Ak-1(z)f(k-1)+⋯+A1(z)f′+A0(z)f=0, where Aj (j=0,1,…,k-1), are entire functions. Assume that there exists l∈{1,2,…,k-1}, such that Al is extremal for Yang's inequality; then we will give some conditions on other coefficients which can guara...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.835-841-395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider that the linear differential equations f(k)+Ak-1(z)f(k-1)+⋯+A1(z)f′+A0(z)f=0, where Aj (j=0,1,…,k-1), are entire functions. Assume that there exists l∈{1,2,…,k-1}, such that Al is extremal for Yang's inequality; then we will give some conditions on other coefficients which can guarantee that every solution f(≢0) of the equation is of infinite order. More specifically, we estimate the lower bound of hyperorder of f if every solution f(≢0) of the equation is of infinite order. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2014/305710 |