On the Growth of Solutions of a Class of Higher Order Linear Differential Equations with Extremal Coefficients

We consider that the linear differential equations f(k)+Ak-1(z)f(k-1)+⋯+A1(z)f′+A0(z)f=0, where Aj (j=0,1,…,k-1), are entire functions. Assume that there exists l∈{1,2,…,k-1}, such that Al is extremal for Yang's inequality; then we will give some conditions on other coefficients which can guara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2014-01, Vol.2014 (2014), p.835-841-395
Hauptverfasser: Long, Jianren, Wu, Pengcheng, Qiu, Chunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider that the linear differential equations f(k)+Ak-1(z)f(k-1)+⋯+A1(z)f′+A0(z)f=0, where Aj (j=0,1,…,k-1), are entire functions. Assume that there exists l∈{1,2,…,k-1}, such that Al is extremal for Yang's inequality; then we will give some conditions on other coefficients which can guarantee that every solution f(≢0) of the equation is of infinite order. More specifically, we estimate the lower bound of hyperorder of f if every solution f(≢0) of the equation is of infinite order.
ISSN:1085-3375
1687-0409
DOI:10.1155/2014/305710