Exploring the Impact of Rainfall on Vehicle Trajectory Patterns and Sideslip Risk: An Empirical Investigation

Understanding the sideslip risks of various trajectory patterns, as well as the impact of rainfall on them, is critical for improving road safety. However, the lack of precise classification indicators hampers systematic analysis of the variations in vehicle trajectory patterns. To address this, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced transportation 2024-02, Vol.2024 (1)
Hauptverfasser: Wang, Bo, Wong, Yiik Diew, Zhang, Chi, Zhang, Hong, Gao, Yanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the sideslip risks of various trajectory patterns, as well as the impact of rainfall on them, is critical for improving road safety. However, the lack of precise classification indicators hampers systematic analysis of the variations in vehicle trajectory patterns. To address this, this study proposes a parameterized classification method for trajectories on curved segments, employing the radius and offset of the trajectory as the primary classification features and dividing the trajectories into nine patterns. These patterns represent variations from smaller to larger radii and inside to outside lane offsets, reflecting different driving behaviors and vehicle stability during vehicle cornering. Concurrently, the friction coefficient utilization rate is used to effectively compare vehicles’ sideslip risk under different weather conditions. Based on this, we construct a framework using computer vision technology for automatically identifying trajectory patterns and measuring sideslip risk. We conducted an empirical study on a highway-curved segment with high sideslip risk in China and collected two datasets under clear and rainy conditions for analysis. The classification results show that the proposed method can effectively classify trajectories according to nine trajectory patterns. Comparative analysis reveals that vehicle trajectories in both the inside and outside lanes are notably more affected by rainfall compared to the middle lane. Meanwhile, trucks demonstrate a higher susceptibility to rainfall than cars. In addition, the analysis of the sideslip risk for different trajectory patterns discovers several high-risk patterns. This study provides an effective approach for monitoring and analyzing the sideslip risk on curved segments, thereby contributing to the enhancement of road design and traffic safety management.
ISSN:0197-6729
2042-3195
DOI:10.1155/2024/3138719