Bargmann Type Systems for the Generalization of Toda Lattices

Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete hierarchy of a generalization of the Toda lattice equation is proposed, which leads to a new symplectic map and a class of finite-dimensional Hamiltonian systems. The gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2014-01, Vol.2014 (2014), p.208-215-222
Hauptverfasser: Li, Fang, Lu, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete hierarchy of a generalization of the Toda lattice equation is proposed, which leads to a new symplectic map and a class of finite-dimensional Hamiltonian systems. The generating function of the integrals of motion is presented, by which the symplectic map and these finite-dimensional Hamiltonian systems are further proved to be completely integrable in the Liouville sense. Finally, the representation of solutions for a lattice equation in the discrete hierarchy is obtained.
ISSN:1110-757X
1687-0042
DOI:10.1155/2014/287529