An open-source toolbox for Multi-patient Intracranial EEG Analysis (MIA)

•Software package for the analysis and visualization of intracranial signals•Consistent and user-friendly graphical interface•Scriptable package for reproducible analysis Intracranial EEG (iEEG) performed during the pre-surgical evaluation of refractory epilepsy provides a great opportunity to inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2022-08, Vol.257, p.119251-119251, Article 119251
Hauptverfasser: Dubarry, A.-Sophie, Liégeois-Chauvel, Catherine, Trébuchon, Agnès, Bénar, Christian, Alario, F.-Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Software package for the analysis and visualization of intracranial signals•Consistent and user-friendly graphical interface•Scriptable package for reproducible analysis Intracranial EEG (iEEG) performed during the pre-surgical evaluation of refractory epilepsy provides a great opportunity to investigate the neurophysiology of human cognitive functions with exceptional spatial and temporal precisions. A difficulty of the iEEG approach for cognitive neuroscience, however, is the potential variability across patients in the anatomical location of implantations and in the functional responses therein recorded. In this context, we designed, implemented, and tested a user-friendly and efficient open-source toolbox for Multi-Patient Intracranial data Analysis (MIA), which can be used as standalone program or as a Brainstorm plugin. MIA helps analyzing event related iEEG signals while following good scientific practice recommendations, such as building reproducible analysis pipelines and applying robust statistics. The signals can be analyzed in the temporal and time-frequency domains, and the similarity of time courses across patients or contacts can be assessed within anatomical regions. MIA allows visualizing all these results in a variety of formats at every step of the analysis. Here, we present the toolbox architecture and illustrate the different steps and features of the analysis pipeline using a group dataset collected during a language task. [Display omitted]
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2022.119251