USING GIS DATA AND MACHINE LEARNING FOR MINERAL MAPPING. STUDY CASE, BOU SKOUR EASTERN ANTI-ATLAS, MOROCCO

The continued demand for mineral deposits in recent years has led exploration geologists for each stage of mineral exploration; find more effective and innovative ways of processing different data types. The use of Geographic Information Systems (GIS) allows various features, such as elevation, slop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2023-01, Vol.XLVIII-4/W6-2022, p.423-430
Hauptverfasser: Houran, N., Ait Raoui, H., Manaan, M., Aabi, A., Simou, M. R., Rhinane, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The continued demand for mineral deposits in recent years has led exploration geologists for each stage of mineral exploration; find more effective and innovative ways of processing different data types. The use of Geographic Information Systems (GIS) allows various features, such as elevation, slope, tectonic structures, lithological units and indicator minerals of Bou Skour region, Eastern Anti-Atlas, Morocco to be mapped making targeted mining decisions easier. In this paper, a methodology was developed to enable the automated mapping of mineral using machine learning methods such Random Forest (RF) and Artificial Neural Network (ANN) achieves approximately 98% classification accuracy on a single Intel® Core™ i5-5300U CPU core with 16GB of memory, and come up with predictive maps representing the probable potentially mineralized areas.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLVIII-4-W6-2022-423-2023