Quenching Efficiency of Quantum Dots Conjugated to Lipid Bilayers on Graphene Oxide Evaluated by Fluorescence Single Particle Tracking

A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-04, Vol.12 (8), p.3733
Hauptverfasser: Okamoto, Yoshiaki, Iwasa, Seiji, Tero, Ryugo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A single particle observation of quantum dots (QDs) was performed on lipid bilayers formed on graphene oxide (GO). The long-range fluorescence quenching of GO has been applied to biosensing for various biomolecules. We demonstrated the single particle observation of a QD on supported lipid bilayers in this study, aiming to detect the quenching efficiency of lipid and protein molecules in a lipid bilayer by fluorescence single particle tacking (SPT). A single lipid bilayer or double lipid bilayers were formed on GO flakes deposited on a thermally oxidized silicon substrate by the vesicle fusion method. The QDs were conjugated on the lipid bilayers, and single particle images of the QDs were obtained under the quenching effect of GO. The quenching efficiency of a single QD was evaluated from the fluorescence intensities on the regions with and without GO. The quenching efficiency reflecting the layer numbers of the lipid bilayers was obtained.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12083733