Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate probe device

•Conductivity probes continuously monitor the retentate and permeate solutions.•Membranes are characterized over predetermined concentration ranges 50× faster.•A single experiment can generate up to 100× more information.•Design heuristics provide guidelines for the incorporation of in-situ probes.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Membrane Science Letters 2024-12, Vol.4 (2), p.100087, Article 100087
Hauptverfasser: Ouimet, Jonathan Aubuchon, Al-Badani, Faraj, Liu, Xinhong, Lair, Laurianne, Muetzel, Zachary W., Dowling, Alexander W., Phillip, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Conductivity probes continuously monitor the retentate and permeate solutions.•Membranes are characterized over predetermined concentration ranges 50× faster.•A single experiment can generate up to 100× more information.•Design heuristics provide guidelines for the incorporation of in-situ probes.•In-situ characterization provides a foundation to create self-driving laboratories. Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors associated with experiments that characterize membrane transport properties. Within this study, we use 3D printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial NF90 and NF270 polyamide membranes over a predetermined range of KCl concentrations from 1 to 100 mM. The measurements obtained by the inline conductivity probes are validated using offline post-experiment analyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an experimentalist to characterize membrane materials by more than 50× and increase the amount of information generated by 100×. Device design principles to address the physical constraints associated with making conductivity measurements in confined volumes are proposed. Overall, the device developed within this study provides a foundation to establish high-throughput, automated membrane characterization techniques. [Display omitted]
ISSN:2772-4212
2772-4212
DOI:10.1016/j.memlet.2024.100087