Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis

Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix in the lung with fibroblast-to-myofibroblast transition, leading to chronically compromising lung function and death. However, very little is known about the metabolic alterations of fibroblasts in I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology 2021-10, Vol.46, p.102082, Article 102082
Hauptverfasser: Wang, Ziwen, Chen, Long, Huang, Yu, Luo, Min, Wang, Huilan, Jiang, Zhongyong, Zheng, Jiancheng, Yang, Zeyu, Chen, Zelin, Zhang, Chi, Long, Lei, Wang, Yawei, Li, Xueru, Liao, Fengying, Gan, Yibo, Luo, Peng, Liu, Yunsheng, Wang, Yu, XuTan, Zhou, Ziyuan, Zhang, Aihua, Shi, Chunmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Idiopathic pulmonary fibrosis (IPF) is characterized by excessive deposition of extracellular matrix in the lung with fibroblast-to-myofibroblast transition, leading to chronically compromising lung function and death. However, very little is known about the metabolic alterations of fibroblasts in IPF, and there is still a lack of pharmaceutical agents to target the metabolic dysregulation. Here we show a glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts from fibrotic lung, and perturbation of glycolysis and FAO affects fibroblasts transdifferentiation. In addition, there is a significant accumulation of succinate both in fibrotic lung tissues and myofibroblasts, where succinate dehydrogenase (SDH) operates in reverse by reducing fumarate to succinate. Then succinate contributes to glycolysis upregulation and FAO downregulation by stabilizing HIF-1α, which promotes the development of lung fibrosis. In addition, we identify a near-infrared small molecule dye, IR-780, as a targeting agent which stimulates mild inhibition of succinate dehydrogenase subunit A (SDHA) in fibroblasts, and which inhibits TGF-β1 induced SDH and succinate elevation, then to prevent fibrosis formation and respiratory dysfunction. Further, enhanced cell retention of IR-780 is shown to promote severe inhibition of SDHA in myofibroblasts, which may contribute to excessive ROS generation and selectively induces myofibroblasts to apoptosis, and then therapeutically improves established lung fibrosis in vivo. These findings indicate that targeting metabolic dysregulation has significant implications for therapies aimed at lung fibrosis and succinate dehydrogenase is an exciting new therapeutic target to treat IPF. [Display omitted] •Glycolysis upregulation and fatty acid oxidation (FAO) downregulation in fibroblasts lead to lung fibrosis.•Succinate contributes to metabolic dysregulation of fibroblasts by stabilizing HIF-1α.•Succinate dehydrogenase is an exciting new therapeutic target to treat IPF.•IR-780 can be a promising agent to control lung fibrosis by targeting succinate dehydrogenase.
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2021.102082