DOTcvpSB, a software toolbox for dynamic optimization in systems biology
Mathematical optimization aims to make a system or design as effective or functional as possible, computing the quality of the different alternatives using a mathematical model. Most models in systems biology have a dynamic nature, usually described by sets of differential equations. Dynamic optimiz...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2009-06, Vol.10 (1), p.199-199, Article 199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mathematical optimization aims to make a system or design as effective or functional as possible, computing the quality of the different alternatives using a mathematical model. Most models in systems biology have a dynamic nature, usually described by sets of differential equations. Dynamic optimization addresses this class of systems, seeking the computation of the optimal time-varying conditions (control variables) to minimize or maximize a certain performance index. Dynamic optimization can solve many important problems in systems biology, including optimal control for obtaining a desired biological performance, the analysis of network designs and computer aided design of biological units.
Here, we present a software toolbox, DOTcvpSB, which uses a rich ensemble of state-of-the-art numerical methods for solving continuous and mixed-integer dynamic optimization (MIDO) problems. The toolbox has been written in MATLAB and provides an easy and user friendly environment, including a graphical user interface, while ensuring a good numerical performance. Problems are easily stated thanks to the compact input definition. The toolbox also offers the possibility of importing SBML models, thus enabling it as a powerful optimization companion to modelling packages in systems biology. It serves as a means of handling generic black-box models as well.
Here we illustrate the capabilities and performance of DOTcvpSB by solving several challenging optimization problems related with bioreactor optimization, optimal drug infusion to a patient and the minimization of intracellular oscillations. The results illustrate how the suite of solvers available allows the efficient solution of a wide class of dynamic optimization problems, including challenging multimodal ones. The toolbox is freely available for academic use. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/1471-2105-10-199 |