Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures

The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-04, Vol.9 (1), p.1-8, Article 1458
Hauptverfasser: Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R., Suzuki, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when incorporated into so-called spintronic devices. These devices usually require spin splitting with magnetic fields. However, there is another promising strategy to achieve spin splitting using spatial symmetry breaking without the use of a magnetic field, known as Rashba-type splitting. Here we report evidence for a giant Rashba-type splitting at the interface of LaTiO 3 and SrTiO 3 . Analysis of the magnetotransport reveals anisotropic magnetoresistance, weak anti-localization and quantum oscillation behavior consistent with a large Rashba-type splitting. It is surprising to find a large Rashba-type splitting in 3 d transition metal oxide-based systems such as the LaTiO 3 /SrTiO 3 interface, but it is promising for the development of a new kind of oxide-based spintronics. Rashba-type splitting is an effective way to manipulate the spin degrees of freedom in a solid without external magnetic field. Here, the authors demonstrate a strong Rashba-type splitting at the interface of LaTiO 3 and SrTiO 3 which is promising for the development of oxide-based spintronics.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04014-0