Sensitive and accurate analysis of gene expression signatures enabled by oligonucleotide-labelled cDNA
High-throughput RNA sequencing offers a comprehensive analysis of transcriptome complexity originated from regulatory events, such as differential gene expression, alternative polyadenylation and others, and allows the increase in diagnostic capacity and precision. For gene expression profiling appl...
Gespeichert in:
Veröffentlicht in: | RNA biology 2022-12, Vol.19 (1), p.774-780 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-throughput RNA sequencing offers a comprehensive analysis of transcriptome complexity originated from regulatory events, such as differential gene expression, alternative polyadenylation and others, and allows the increase in diagnostic capacity and precision. For gene expression profiling applications that do not specifically require information on alternative splicing events, the mRNA 3' termini counting approach is a cost-effective alternative to whole transcriptome sequencing. Here, we report MTAS-seq (mRNA sequencing via terminator-assisted synthesis) - a novel RNA-seq library preparation method directed towards mRNA 3' termini. We demonstrate the specific enrichment for 3'-terminal regions by simple and quick single-tube protocol with built-in molecular barcoding to enable accurate estimation of transcript abundance. To achieve that, we synthesized oligonucleotide-modified dideoxynucleotides which enable the generation of cDNA libraries at the reverse transcription step. We validated the performance of MTAS-seq on well-characterized reference bulk RNA and further tested it with eukaryotic cell lysates. |
---|---|
ISSN: | 1547-6286 1555-8584 1555-8584 |
DOI: | 10.1080/15476286.2022.2078093 |