Environmentally Stable Chiral-Nematic Liquid-Crystal Elastomers with Mechano-Optical Properties

Chiral-nematic liquid crystal (N* LC) elastomers exhibit mechano-optical responsive behavior. However, practical sensor applications have been limited by the intrinsic sensitivity of N* LC elastomers to environmental conditions, such as temperature. Although densely cross-linked LC network polymers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-05, Vol.11 (11), p.5037
Hauptverfasser: Ku, Kyosun, Hisano, Kyohei, Kimura, Seiya, Shigeyama, Tomoki, Akamatsu, Norihisa, Shishido, Atsushi, Tsutsumi, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chiral-nematic liquid crystal (N* LC) elastomers exhibit mechano-optical responsive behavior. However, practical sensor applications have been limited by the intrinsic sensitivity of N* LC elastomers to environmental conditions, such as temperature. Although densely cross-linked LC network polymers exhibit high thermal stability, they are not proper for the mechanical sensor due to high glass transition temperatures and low flexibility. To overcome these issues, we focused on enhancing thermal stability by introducing noncovalent cross-linking sites via intermolecular interactions between LC molecules bonded to the polymer network. N* LC elastomers with a cyanobiphenyl derivative as a side-chain mesogen exhibited mechano-optical responsive behavior, with a hypsochromic shift of the reflection peak wavelength under an applied tensile strain and quick shape and color recovery owing to high elasticity. Notably, the N* LC elastomers showed high resistance to harsh environments, including high temperatures and various solvents. Interactions, such as π–π stacking and dipole–dipole interactions, between the cyanobiphenyl units can act as weak cross-links, thus improving the thermal stability of the LC phase without affecting the mechano-optical response. Thus, these N* LC elastomers have great potential for the realization of practical mechano-optical sensors.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11115037