Area Occupancy-Based Adaptive Density Estimation for Mixed Road Traffic

Managing congestion in mixed traffic conditions, characterized by heterogeneous and lane-less traffic, is a challenging task. Traditionally density, defined as the number of vehicles in a road stretch, is used to quantify congestion. However, direct measurement of density is difficult and hence is u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.5502-5514
Hauptverfasser: George, Reenu, Vanajakshi, Lelitha Devi, Subramanian, Shankar C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Managing congestion in mixed traffic conditions, characterized by heterogeneous and lane-less traffic, is a challenging task. Traditionally density, defined as the number of vehicles in a road stretch, is used to quantify congestion. However, direct measurement of density is difficult and hence is usually estimated from other variables. In this paper, a relationship is derived between traffic density and area occupancy, a variable that can incorporate heterogeneity and lane-less movement. Using the derived density-area occupancy relation, a non-continuum macroscopic single state linear time varying model was developed. Estimation of density was done by using the Kalman filtering technique and corroborated with simulated density. The need for dynamic estimation is motivated by evaluating the performance of two static estimation schemes in the presence of uncertainties. Performance was tested for different traffic scenarios such as congestion and non-recurrent traffic incidents. Further, to improve the estimation accuracy in scenarios involving transitions in traffic conditions, an adaptive estimator was developed. It was found that the adaptive estimator provided the best estimation accuracy.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2963273