Two chemically distinct root lignin barriers control solute and water balance

Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-04, Vol.12 (1), p.2320-2320, Article 2320
Hauptverfasser: Reyt, Guilhem, Ramakrishna, Priya, Salas-González, Isai, Fujita, Satoshi, Love, Ashley, Tiemessen, David, Lapierre, Catherine, Morreel, Kris, Calvo-Polanco, Monica, Flis, Paulina, Geldner, Niko, Boursiac, Yann, Boerjan, Wout, George, Michael W., Castrillo, Gabriel, Salt, David E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lignin is a complex polymer deposited in the cell wall of specialised plant cells, where it provides essential cellular functions. Plants coordinate timing, location, abundance and composition of lignin deposition in response to endogenous and exogenous cues. In roots, a fine band of lignin, the Casparian strip encircles endodermal cells. This forms an extracellular barrier to solutes and water and plays a critical role in maintaining nutrient homeostasis. A signalling pathway senses the integrity of this diffusion barrier and can induce over-lignification to compensate for barrier defects. Here, we report that activation of this endodermal sensing mechanism triggers a transcriptional reprogramming strongly inducing the phenylpropanoid pathway and immune signaling. This leads to deposition of compensatory lignin that is chemically distinct from Casparian strip lignin. We also report that a complete loss of endodermal lignification drastically impacts mineral nutrients homeostasis and plant growth. Defects in the Casparian strip, a fine band of lignin that seals root endodermal cells and plays roles in nutrient homeostasis, activate a signaling pathway leading to over-lignification. Here, the authors show that this process leads to the deposition of compensatory lignin that is chemically distinct from Casparian strip lignin.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22550-0