An investigation on the $n$-fold IVRL-filters in triangle algebras

The present study aimed to introduce $n$-fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of $n$-fold (positive) implicative IVRL-extended filters and $n$-fold (positive) implicative triangle algebras were defined. Afterwards, several char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica Bohemica 2020-04, Vol.145 (1), p.75-91
Hauptverfasser: Zahiri, Saeide, Borumand Saeid, Arsham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aimed to introduce $n$-fold interval valued residuated lattice (IVRL for short) filters in triangle algebras. Initially, the notions of $n$-fold (positive) implicative IVRL-extended filters and $n$-fold (positive) implicative triangle algebras were defined. Afterwards, several characterizations of the algebras were presented, and the correlations between the $n$-fold IVRL-extended filters, $n$-fold (positive) implicative algebras, and the Gödel triangle algebra were discussed.
ISSN:0862-7959
2464-7136
DOI:10.21136/MB.2019.0104-17