Linear Potentials in Galaxy Halos by Asymmetric Wormholes

A spherically symmetric space-time solution for a diffusive two measures theory is studied. An asymmetric wormhole geometry is obtained where the metric coefficients has a linear term for galactic distances and the analysis of Mannheim and collaborators, can then be used to describe the galactic rot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Universe (Basel) 2018-11, Vol.4 (11), p.112
Hauptverfasser: Bahamonde, Sebastian, Benisty, David, Guendelman, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A spherically symmetric space-time solution for a diffusive two measures theory is studied. An asymmetric wormhole geometry is obtained where the metric coefficients has a linear term for galactic distances and the analysis of Mannheim and collaborators, can then be used to describe the galactic rotation curves. For cosmological distances a de-Sitter space-time is realized. Center of gravity coordinates for the wormhole are introduced which are the most suitable for the collective motion of a wormhole. The wormholes connect universes with different vacuum energy densities which may represent different universes in a “landscape scenario”. The metric coefficients depend on the asymmetric wormhole parameters. The coefficient of the linear potential is proportional to both the mass of the wormhole and the cosmological constant of the observed universe. Similar results are also expected in other theories like k-essence theories, that may support wormholes.
ISSN:2218-1997
2218-1997
DOI:10.3390/universe4110112