Body Mass Index Modulates the Impact of Short-Term Exposure to Air Particulate Matter on High-Density Lipoprotein Function

Air particulate matter (PM) exposure has been associated with increased cardiovascular risk, especially in obesity. By triggering inflammation and oxidative stress, PM could impact atheroprotection by high-density lipoproteins (HDL). The aim of the study was to assess the relationship between short-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2022-09, Vol.11 (10), p.1938
Hauptverfasser: Ossoli, Alice, Favero, Chiara, Vigna, Luisella, Pesatori, Angela Cecilia, Bollati, Valentina, Gomaraschi, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Air particulate matter (PM) exposure has been associated with increased cardiovascular risk, especially in obesity. By triggering inflammation and oxidative stress, PM could impact atheroprotection by high-density lipoproteins (HDL). The aim of the study was to assess the relationship between short-term exposure to PM and HDL function, and the modifying effect of body mass index (BMI). Daily exposures to PM10 and PM2.5 of 50 subjects with overweight/obesity and 41 healthy volunteers with BMI < 30 kg/m2 were obtained from fixed monitoring stations. HDL function was assessed as promotion of nitric oxide (NO) release by endothelial cells and reduction in cholesterol in macrophages. HDL-induced NO release progressively declined with the increase in BMI. No association was found between HDL function and PM exposure, but a modifying effect of BMI was observed. The positive association between PM10 exposure at day −1 and NO production found at normal BMI values was lost in participants with higher BMI. Similar results were obtained for the reduction in macrophage cholesterol. The loss of the compensatory response of HDL function to PM exposure at increasing BMI levels could contribute to the endothelial dysfunction induced by PM and help to explain the susceptibility of subjects with obesity to air pollution.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox11101938