Ensuring Stability of Undermining Inclined Drainage Holes During Intensive Development of Multiple Gas-Bearing Coal Layers
At high rates of production face advance, requirements towards reliable operation of undermining drainage holes get raised. The issue of maintaining high intensity of gaseous seams development under naturally increasing gas content, mining depth and capacity of production equipment poses a problem....
Gespeichert in:
Veröffentlicht in: | Zapiski Gornogo instituta (1999) 2019-01, Vol.239 (5), p.497-501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At high rates of production face advance, requirements towards reliable operation of undermining drainage holes get raised. The issue of maintaining high intensity of gaseous seams development under naturally increasing gas content, mining depth and capacity of production equipment poses a problem. The greatest threat comes from the loss of hole stability in the bearing pressure affected zone (in front of the face) and in the intensive shift area of overhanging rock corbels (behind the face). Intensification of air leaks due to deformation of borehole channel leads to impoverishment of removed methane-air mixture and an increasing risk to disturb safe aerogas regime in the mining area. The paper describes a mechanism of how coal-face operations affect the state of underground holes and formation of overhanging rock corbels. A typification of basic kinds of borehole deformations is presented. Authors point out critical disadvantages of the most widely-used technological schemes of gaseous seams development under high load on the production face, which hinder normal operation of a gas drainage system. As a result of research, a dependency of shot hole number, as well as the distance between shot hole axes and the borehole, on the stress state of the borehole outline has been defined more precisely. Basing on that, a formula to calculate drilling parameters of the discharge hole system has been suggested. Implementation of these measures will allow to increase the efficiency of underground gas drainage and to maintain growing intensity of gaseous coal seam development. |
---|---|
ISSN: | 2411-3336 2541-9404 |
DOI: | 10.31897/pmi.2019.5.497 |