Dynamical Recovery of Complex Networks under a Localised Attack

In real systems, some damaged nodes can spontaneously become active again when recovered from themselves or their active neighbours. However, the spontaneous dynamical recovery of complex networks that suffer a local failure has not yet been taken into consideration. To model this recovery process,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2021-09, Vol.14 (9), p.274
Hauptverfasser: Wang, Fan, Dong, Gaogao, Tian, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In real systems, some damaged nodes can spontaneously become active again when recovered from themselves or their active neighbours. However, the spontaneous dynamical recovery of complex networks that suffer a local failure has not yet been taken into consideration. To model this recovery process, we develop a framework to study the resilience behaviours of the network under a localised attack (LA). Since the nodes’ state within the network affects the subsequent dynamic evolution, we study the dynamic behaviours of local failure propagation and node recoveries based on this memory characteristic. It can be found that the fraction of active nodes switches back and forth between high network activity and low network activity, which leads to the spontaneous emergence of phase-flipping phenomena. These behaviours can be found in a random regular network, Erdős-Rényi network and Scale-free network, which shows that these three types of networks have the same or different resilience behaviours under an LA and random attack. These results will be helpful for studying the spontaneous recovery real systems under an LA. Our work provides insight into understanding the recovery process and a protection strategy of various complex systems from the perspective of damaged memory.
ISSN:1999-4893
1999-4893
DOI:10.3390/a14090274