Large block coal detection algorithm for fully mechanized working face based on MES-YOLOv5s
The objects in the fully mechanized working face have the features of high-speed motion, multi-scale, occlusion, etc. The existing object detection algorithms have problems such as low precision, large memory of models, and strong hardware dependence. In order to solve the above problems, a large bl...
Gespeichert in:
Veröffentlicht in: | Gong kuang zi dong hua = Industry and mine automation 2024-03, Vol.50 (3), p.42-47, 141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objects in the fully mechanized working face have the features of high-speed motion, multi-scale, occlusion, etc. The existing object detection algorithms have problems such as low precision, large memory of models, and strong hardware dependence. In order to solve the above problems, a large block coal detection algorithm based on MES-YOLOv5s is proposed in fully mechanized working face. The method adopts a lightweight design, uses MobileNetV3 as the backbone network to reduce the memory occupied by the model and improve the detection speed on the CPU side. The method adds an efficient multi-scale attention (EMA) module to the neck network, fuses contextual information of different scales, and further reduces computational overhead. The method uses SIoU loss function instead of CIoU loss function to improve training speed and inference accuracy. The ablation experiment results show that MobileNetV3 significantly reduces the memory and detection time occupied by the model, but the mAP loss is severe. The |
---|---|
ISSN: | 1671-251X |
DOI: | 10.13272/j.issn.1671-251x.2024030009 |