Long-term survival and second malignant tumor prediction in pediatric, adolescent, and young adult cancer survivors using Random Survival Forests: a SEER analysis

Survival and second malignancy prediction models can aid clinical decision making. Most commonly, survival analysis studies are performed using traditional proportional hazards models, which require strong assumptions and can lead to biased estimates if violated. Therefore, this study aims to implem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-02, Vol.13 (1), p.1911-1911, Article 1911
Hauptverfasser: Zhang, Ivy Y., Hart, Gregory R., Qin, Bo, Deng, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Survival and second malignancy prediction models can aid clinical decision making. Most commonly, survival analysis studies are performed using traditional proportional hazards models, which require strong assumptions and can lead to biased estimates if violated. Therefore, this study aims to implement an alternative, machine learning (ML) model for survival analysis: Random Survival Forest (RSF). In this study, RSFs were built using the U.S. Surveillance Epidemiology and End Results to (1) predict 30-year survival in pediatric, adolescent, and young adult cancer survivors; and (2) predict risk and site of a second tumor within 30 years of the first tumor diagnosis in these age groups. The final RSF model for pediatric, adolescent, and young adult survival has an average Concordance index (C-index) of 92.9%, 94.2%, and 94.4% and average time-dependent area under the receiver operating characteristic curve (AUC) at 30-years since first diagnosis of 90.8%, 93.6%, 96.1% respectively. The final RSF model for pediatric, adolescent, and young adult second malignancy has an average C-index of 86.8%, 85.2%, and 88.6% and average time-dependent AUC at 30-years since first diagnosis of 76.5%, 88.1%, and 99.0% respectively. This study suggests the robustness and potential clinical value of ML models to alleviate physician burden by quickly identifying highest risk individuals.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-29167-x