The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins
Many toxins are life-threatening to both animals and humans. However, specific antidotes are not available for most of those toxins. The molecular mechanisms underlying the toxicology of well-known toxins are not yet fully characterized. Recently, the advance in CRISPR-Cas9 technologies has greatly...
Gespeichert in:
Veröffentlicht in: | Computational and structural biotechnology journal 2022, Vol.20, p.5076-5084 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many toxins are life-threatening to both animals and humans. However, specific antidotes are not available for most of those toxins. The molecular mechanisms underlying the toxicology of well-known toxins are not yet fully characterized. Recently, the advance in CRISPR-Cas9 technologies has greatly accelerated the process of revealing the toxic mechanisms of some common toxins on hosts from a genome-wide perspective. The high-throughput CRISPR screen has made it feasible to untangle complicated interactions between a particular toxin and its corresponding targeting tissue(s). In this review, we present an overview of recent advances in molecular dissection of toxins’ cytotoxicity by using genome-wide CRISPR screens, summarize the components essential for toxin-specific CRISPR screens, and propose new strategies for future research. |
---|---|
ISSN: | 2001-0370 2001-0370 |
DOI: | 10.1016/j.csbj.2022.09.012 |