Three Musketeers: demonstration of multilevel memory, selector, and synaptic behaviors from an Ag-GeTe based chalcogenide material
Functional neuronal computing systems that support information diversification require high-density memory with selector devices to reduce leakage current in cross-point architectures, which drives us to develop a functional switching layer that operates as three distinct devices, namely non-volatil...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2021-11, Vol.15, p.1984-1995 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functional neuronal computing systems that support information diversification require high-density memory with selector devices to reduce leakage current in cross-point architectures, which drives us to develop a functional switching layer that operates as three distinct devices, namely non-volatile memory, selector, and synaptic devices, using a GeTe-based single material system. In this study, amorphous Ag-GeTe switching layers are engineered by doping with Te species to achieve either resistive switching (RS) or threshold switching properties. The Ag/Ag-GeTe/Ag memory device exhibits multilevel characteristics via a tunable compliance current approach. By comparison, Ag/Ag-GeTex/Ag selector device provides excellent selectivity (>106) with a very low OFF-current (∼10−11 A). The RS mechanism for memory and selector devices is interrogated by using conductive atomic force microscopy. Moreover, the Ag/Ag-GeTe/Ag RS device mimics a cohort of basic and complex synaptic plasticity properties, including potentiation-depression and four-spike time-dependent plasticity rules that include asymmetric Hebbian, asymmetric anti-Hebbian, symmetric Hebbian, and symmetric anti-Hebbian learning rules. The capability of the synaptic devices to detect image edges is demonstrated by using a convolution neural network. The present work showcases the multi-functionality of Ag-GeTe materials, which will likely emerge as a prominent candidate for high-density cross-point architecture-based neuromorphic computing systems. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2021.09.044 |