ON A SYSTEM OF HAMILTON-JACOBI-BELLMAN INEQUALITIES ASSOCIATED TO A MINIMAX PROBLEM WITH ADDITIVE FINAL COST

We study a minimax optimal control problem with finite horizon and additive final cost. After introducing an auxiliary problem, we analyze the dynamical programming principle (DPP) and we present a Hamilton‐Jacobi‐Bellman (HJB) system. We prove the existence and uniqueness of a viscosity solution fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2003, Vol.2003 (72), p.4517-4538-332
Hauptverfasser: Di Marco, Silvia C., González, Roberto L. V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a minimax optimal control problem with finite horizon and additive final cost. After introducing an auxiliary problem, we analyze the dynamical programming principle (DPP) and we present a Hamilton‐Jacobi‐Bellman (HJB) system. We prove the existence and uniqueness of a viscosity solution for this system. This solution is the cost function of the auxiliary problem and it is possible to get the solution of the original problem in terms of this solution.
ISSN:0161-1712
1687-0425
DOI:10.1155/S0161171203302108