PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection

Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-07, Vol.7 (1), p.6862-19, Article 6862
Hauptverfasser: Song, Jiangning, Wang, Huilin, Wang, Jiawei, Leier, André, Marquez-Lago, Tatiana, Yang, Bingjiao, Zhang, Ziding, Akutsu, Tatsuya, Webb, Geoffrey I., Daly, Roger J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein phosphorylation is a major form of post-translational modification (PTM) that regulates diverse cellular processes. In silico methods for phosphorylation site prediction can provide a useful and complementary strategy for complete phosphoproteome annotation. Here, we present a novel bioinformatics tool, PhosphoPredict, that combines protein sequence and functional features to predict kinase-specific substrates and their associated phosphorylation sites for 12 human kinases and kinase families, including ATM, CDKs, GSK-3, MAPKs, PKA, PKB, PKC, and SRC. To elucidate critical determinants, we identified feature subsets that were most informative and relevant for predicting substrate specificity for each individual kinase family. Extensive benchmarking experiments based on both five-fold cross-validation and independent tests indicated that the performance of PhosphoPredict is competitive with that of several other popular prediction tools, including KinasePhos, PPSP, GPS, and Musite. We found that combining protein functional and sequence features significantly improves phosphorylation site prediction performance across all kinases. Application of PhosphoPredict to the entire human proteome identified 150 to 800 potential phosphorylation substrates for each of the 12 kinases or kinase families. PhosphoPredict significantly extends the bioinformatics portfolio for kinase function analysis and will facilitate high-throughput identification of kinase-specific phosphorylation sites, thereby contributing to both basic and translational research programs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-07199-4