Global dynamics for a Filippov system with media effects
In the process of spreading infectious diseases, the media accelerates the dissemination of information, and people have a deeper understanding of the disease, which will significantly change their behavior and reduce the disease transmission; it is very beneficial for people to prevent and control...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences and engineering : MBE 2022-01, Vol.19 (3), p.2835-2852 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the process of spreading infectious diseases, the media accelerates the dissemination of information, and people have a deeper understanding of the disease, which will significantly change their behavior and reduce the disease transmission; it is very beneficial for people to prevent and control diseases effectively. We propose a Filippov epidemic model with nonlinear incidence to describe media's influence in the epidemic transmission process. Our proposed model extends existing models by introducing a threshold strategy to describe the effects of media coverage once the number of infected individuals exceeds a threshold. Meanwhile, we perform the stability of the equilibriua, boundary equilibrium bifurcation, and global dynamics. The system shows complex dynamical behaviors and eventually stabilizes at the equilibrium points of the subsystem or pseudo equilibrium. In addition, numerical simulation results show that choosing appropriate thresholds and control intensity can stop infectious disease outbreaks, and media coverage can reduce the burden of disease outbreaks and shorten the duration of disease eruptions. |
---|---|
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2022130 |