The Use of Iron-Doped Anatase TiO2 Nanofibers for Enhanced Photocatalytic Fenton-like Reaction to Degrade Tylosin

The removal of antibiotics from wastewater to prevent their environmental accumulation is significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers (Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under LED illuminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-10, Vol.28 (19), p.6977
Hauptverfasser: Wang, Xiao, Lu, Wei, Zhang, Shangui, Guo, Changqing, Yang, Kai, Sun, Yan, Shao, Yashi, Li, Qiyuan, Bu, Mingsheng, Wu, Lianfeng, Wang, Bo, Yang, Dongjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The removal of antibiotics from wastewater to prevent their environmental accumulation is significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers (Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under LED illumination. Compared with the pristine TiO2 nanofibers (TNs), the optimized Fe-TNs exhibited improved visible-light-driven photocatalytic Fenton-like activity with a TYL degradation efficiency of 98.5% within 4 h. The effective TYL degradation could be attributed to the expanded optical light absorption and accelerated separation and migration of photogenerated electrons and holes after the introduction of Fe. The photogenerated electrons were highly conducive to the generation of active SO4•− radicals as they facilitated Fe(III)/Fe(II) cycles, and to oxidizing TYL. Moreover, the holes could be involved in TYL degradation. Thus, a significant enhancement in TYL degradation could be achieved. This research verifies the use of iron-doped anatase nanofibers as an effective method to synthesize novel photocatalytic Fenton-like catalysts through surface engineering for wastewater remediation.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28196977