Human Health Risk Assessment of Air Pollution in the Regions of Unsustainable Heating Sources. Case Study—The Tourist Areas of Southern Poland
Air pollution is one of the main factors affecting human health. Air quality is especially important in the tourist areas developed with facilities for outdoor activities. During the winter season of 2017/2018, the concentrations of particulate matter (PM10, PM2.5, PM1), CO, O3, and NO2 were studied...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2021-05, Vol.12 (5), p.615 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Air pollution is one of the main factors affecting human health. Air quality is especially important in the tourist areas developed with facilities for outdoor activities. During the winter season of 2017/2018, the concentrations of particulate matter (PM10, PM2.5, PM1), CO, O3, and NO2 were studied in 12 attractive tourist villages in the surroundings of the Czorsztyn Reservoir in southern Poland. Air pollutant measurements were performed continuously, using a single ground-based Alphasense air sensor. Our assessment of human health risk (HHRA), arising from inhalation exposure to air contaminants, was calculated for both local inhabitants and tourists, based on actual measured values. It was found that pollutant concentrations exceeded both permissible and recommended levels of PM10 and PM2.5. The mean total noncarcinogenic risk values were equal to 9.58 (unitless) for adults and 9.68 (unitless) for children and infants, under the resident exposure scenario. However, under the tourist exposure scenario, the mean total risk was equal to 1.63 (unitless) for adults and 1.64 (unitless) for children and infants. The risk to tourists was lower than that to inhabitants due to shorter exposure times. The target non-carcinogenic value of 1, calculated for PM10, PM2.5, and NO2, was significantly exceeded in total risk, under the residential exposure scenario, in reference to all the local subpopulations. In the majority of the investigated locations, the total risk exceeded the value of 1, under the tourist scenario, for all the subpopulations analysed. PM2.5 was recognised to be the most important contaminant in our risk analysis, in view of its share in the total risk value. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos12050615 |