Activation of Mitochondrial Ca2+ Oscillation and Mitophagy Induction by Femtosecond Laser Photostimulation

Ultra-precise stimulation solely to individual mitochondria, without any influence to the whole cell, is quite difficult by traditional biochemical reagents. In mitophagy research, the mitochondria and even the whole cell usually suffer irreversible and great damage caused by treatment with potent c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bio-protocol 2022-04, Vol.12 (7)
Hauptverfasser: Tian, Xiaoying, He, Hao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultra-precise stimulation solely to individual mitochondria, without any influence to the whole cell, is quite difficult by traditional biochemical reagents. In mitophagy research, the mitochondria and even the whole cell usually suffer irreversible and great damage caused by treatment with potent chemicals. In this protocol, we present the technical procedures of our developed noninvasive ultra-precise laser stimulation (UPLaS) technology, which introduces precise stimulation to individual mitochondria, to excite mitochondrial Ca2+ (mitoCa2+) oscillations, with little perturbation to mitochondrial membrane potential (MMP), or mitochondrial reactive oxygen species (mitoROS). The mitoCa2+ oscillation by UPLaS was able to initiate the PINK1/Parkin pathway for mitophagy. This protocol has good potential to benefit researches on mitophagy and mitochondrial diseases. Graphic abstract: Figure 1. Flowchart of the UPLaS technology. The femtosecond laser (1030 nm, 1 MHz, 220 fs) can stimulate individual mitochondria (1 μm2) for a short period (0.1 s), whereas confocal microscopy (CM) provides continuous cell imaging to monitor molecular dynamics in real time, before and after UPLaS.
ISSN:2331-8325
2331-8325
DOI:10.21769/BioProtoc.4369