Deep Learning Application in Dental Caries Detection Using Intraoral Photos Taken by Smartphones

A mobile-phone-based diagnostic tool, which most of the population can easily access, could be a game changer in increasing the number of examinations of people with dental caries. This study aimed to apply a deep learning algorithm in diagnosing the stages of smooth surface caries via smartphone im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-06, Vol.12 (11), p.5504
Hauptverfasser: Thanh, Mai Thi Giang, Van Toan, Ngo, Ngoc, Vo Truong Nhu, Tra, Nguyen Thu, Giap, Cu Nguyen, Nguyen, Duc Minh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mobile-phone-based diagnostic tool, which most of the population can easily access, could be a game changer in increasing the number of examinations of people with dental caries. This study aimed to apply a deep learning algorithm in diagnosing the stages of smooth surface caries via smartphone images. Materials and methods: A training dataset consisting of 1902 photos of the smooth surface of teeth taken with an iPhone 7 from 695 people was used. Four deep learning models, consisting of Faster Region-Based Convolutional Neural Networks (Faster R-CNNs), You Only Look Once version 3 (YOLOv3), RetinaNet, and Single-Shot Multi-Box Detector (SSD), were tested to detect initial caries lesions and cavities. The reference standard was the diagnosis of a dentist based on image examination according to the International Caries Classification and Management System (ICCMS) classification. Results: For cavitated caries, YOLOv3 and Faster R-CNN showed the highest sensitivity among the four tested models, at 87.4% and 71.4%, respectively. The sensitivity levels of these two models were only 36.9 % and 26% for visually non-cavitated (VNC). The specificity of the four models reached above 86% for cavitated caries and above 71% for VNC. Conclusion: The clinical application of YOLOv3 and Faster R-CNN models for diagnosing dental caries via smartphone images was promising. The current study provides a preliminary insight into the potential translation of AI from the laboratory to clinical practice.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12115504