Photosystem II Repair Cycle in Faba Bean May Play a Role in Its Resistance to Botrytis fabae Infection

Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba). Although chemical control of this disease is an option, it has serious economic and environmental drawbacks that m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2021-11, Vol.11 (11), p.2247
Hauptverfasser: Castillejo, María Ángeles, Villegas-Fernández, Ángel M., Hernández-Lao, Tamara, Rubiales, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chocolate spot, which is caused by the necrotrophic fungus Botrytis fabae, is a major foliar disease occurring worldwide and dramatically reducing crop yields in faba bean (Vicia faba). Although chemical control of this disease is an option, it has serious economic and environmental drawbacks that make resistant cultivars a more sensible choice. The molecular mechanisms behind the defense against B. fabae are poorly understood. In this work, we studied the leave proteome in two faba bean genotypes that respond differently to B. fabae in order to expand the available knowledge on such mechanisms. For this purpose, we used two-dimensional gel electrophoresis (2DE) in combination with Matrix-Assisted Laser Desorption/Ionization (MALDI-TOF/TOF). Univariate statistical analysis of the gels revealed 194 differential protein spots, 102 of which were identified by mass spectrometry. Most of the spots belonged to proteins in the energy and primary metabolism, degradation, redox or response to stress functional groups. The MS results were validated with assays of protease activity in gels. Overall, they suggest that the two genotypes may respond to B. fabae with a different PSII protein repair cycle mechanism in the chloroplast. The differences in resistance to B. fabae may be the result of a metabolic imbalance in the susceptible genotype and of a more efficient chloroplast detoxification system in the resistant genotype at the early stages of infection.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy11112247