Research progress on the three-dimensional finite element analysis of bite opening
Deep bite is a common clinical malocclusion that has a great impact on patients’ facial aesthetics and oral function. Bite opening is the key step in the treatment of deep bite, playing a decisive role in the development of mandible and the progress of orthodontic treatment. Torque and tip control d...
Gespeichert in:
Veröffentlicht in: | Kou qiang ji bing fang zhi = Journal of prevention and treatment for stomatological diseases 2022-11, Vol.30 (11), p.827-831 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep bite is a common clinical malocclusion that has a great impact on patients’ facial aesthetics and oral function. Bite opening is the key step in the treatment of deep bite, playing a decisive role in the development of mandible and the progress of orthodontic treatment. Torque and tip control during the correction of deep bites is a hot topic in orthodontics. The three-dimensional finite element method can accurately simulate clinical processes and conduct dynamic stress analysis, which provides the basis of the biomechanical mechanism. This paper reviewed the finite element analysis of various orthodontic systems for bite opening to provide a reference for clinical application. The emergence of mini-implants provided a new idea for anchorage control in bite opening. Finite element studies found that high-positioned mini-implants are beneficial for bodily tooth intrusion and proposed the ideal position for force application. For the finite element simulation of the reverse curve archwire, it was found th |
---|---|
ISSN: | 2096-1456 |
DOI: | 10.12016/j.issn.2096-1456.2022.11.011 |