Research on Cam–Kalm Automatic Tracking Technology of Low, Slow, and Small Target Based on Gm-APD LiDAR
With the wide application of UAVs in modern intelligent warfare as well as in civil fields, the demand for C-UAS technology is increasingly urgent. Traditional detection methods have many limitations in dealing with “low, slow, and small” targets. This paper presents a pure laser automatic tracking...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2025-01, Vol.17 (1), p.165 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the wide application of UAVs in modern intelligent warfare as well as in civil fields, the demand for C-UAS technology is increasingly urgent. Traditional detection methods have many limitations in dealing with “low, slow, and small” targets. This paper presents a pure laser automatic tracking system based on Geiger-mode avalanche photodiode (Gm-APD). Combining the target motion state prediction of the Kalman filter and the adaptive target tracking of Camshift, a Cam–Kalm algorithm is proposed to achieve high-precision and stable tracking of moving targets. The proposed system also introduces two-dimensional Gaussian fitting and edge detection algorithms to automatically determine the target’s center position and the tracking rectangular box, thereby improving the automation of target tracking. Experimental results show that the system designed in this paper can effectively track UAVs in a 70 m laboratory environment and a 3.07 km to 3.32 km long-distance scene while achieving low center positioning error and MSE. This technology provides a new solution for real-time tracking and ranging of long-distance UAVs, shows the potential of pure laser approaches in long-distancelow, slow, and small target tracking, and provides essential technical support for C-UAS technology. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs17010165 |