High-Speed Interval Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search for Optimal Design of Fuzzy Controllers

Fuzzy systems have become a good solution to the problem of fixed parameters in metaheuristic algorithms, proving their efficiency when performing dynamic parameter adaptations using type-1 and type-2 fuzzy logic. However, the computational cost of type-2 fuzzy systems when using the continuous enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2021-04, Vol.9 (7), p.758
Hauptverfasser: Castillo, Oscar, Valdez, Fevrier, Peraza, Cinthia, Yoon, Jin Hee, Geem, Zong Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fuzzy systems have become a good solution to the problem of fixed parameters in metaheuristic algorithms, proving their efficiency when performing dynamic parameter adaptations using type-1 and type-2 fuzzy logic. However, the computational cost of type-2 fuzzy systems when using the continuous enhanced Karnik–Mendel (CKM) algorithm for type-reduction, when applied to control and optimization, is too high. Therefore, it is proposed to use an approximation to the CKM algorithm in the type-2 fuzzy system for adjusting the pitch adjustment rate (PArate) parameter in the original harmony search algorithm (HS). The main contribution of this article is to verify that the implementation of the proposed methodology achieves results that are equivalent to the interval type-2 fuzzy system with the CKM algorithm, but in less computing time and also allowing an efficient dynamic parameter adaptation. It is noteworthy that this method is relatively new in the area of metaheuristics algorithms so there is a current interest to work with this methodology. The proposed method was used in optimizing the antecedents and consequents for an interval type-2 fuzzy controller of direct current motor. Experimental results without noise and then with uniform random noise numbers (Gaussian noise) in the controller were obtained to verify that the implementation is efficient when compared to conventional and other existing methods.
ISSN:2227-7390
2227-7390
DOI:10.3390/math9070758