A combinatorial drug screen in PDX-derived primary rhabdomyosarcoma cells identifies the NOXA - BCL-XL/MCL-1 balance as target for re-sensitization to first-line therapy in recurrent tumors
First-line therapy for most pediatric sarcoma is based on chemotherapy in combination with radiotherapy and surgery. A significant number of patients experience drug resistance and development of relapsed tumors. Drugs that have the potential to re-sensitize relapsed tumor cells toward chemotherapy...
Gespeichert in:
Veröffentlicht in: | Neoplasia (New York, N.Y.) N.Y.), 2021-09, Vol.23 (9), p.929-938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | First-line therapy for most pediatric sarcoma is based on chemotherapy in combination with radiotherapy and surgery. A significant number of patients experience drug resistance and development of relapsed tumors. Drugs that have the potential to re-sensitize relapsed tumor cells toward chemotherapy treatment are therefore of great clinical interest. Here, we used a drug profiling platform with PDX-derived primary rhabdomyosarcoma cells to screen a large drug library for compounds re-sensitizing relapse tumor cells toward standard chemotherapeutics used in rhabdomyosarcoma therapy. We identified ABT-263 (navitoclax) as most potent compound enhancing general chemosensitivity and used different pharmacologic and genetic approaches in vitro and in vivo to detect the NOXA-BCL-XL/MCL-1 balance to be involved in modulating drug response. Our data therefore suggests that players of the intrinsic mitochondrial apoptotic cascade are major targets for stimulation of response toward first-line therapies in rhabdomyosarcoma. |
---|---|
ISSN: | 1476-5586 1522-8002 1476-5586 |
DOI: | 10.1016/j.neo.2021.07.001 |