Multiple Sclerosis: Evaluation of Purine Nucleotide Metabolism in Central Nervous System in Association with Serum Levels of Selected Fat-Soluble Antioxidants

In the pathogenesis of demyelinating diseases including multiple sclerosis (MS) an important role is played by oxidative stress. Increased energy requirements during remyelination of axons and mitochondria failure is one of the causes of axonal degeneration and disability in MS. In this context, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiple Sclerosis International 2014-01, Vol.2014 (2014), p.213-221
Hauptverfasser: Turcani, Peter, Kucharska, Jarmila, Kuracka, L'ubomir, Kalnovicova, Terezia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the pathogenesis of demyelinating diseases including multiple sclerosis (MS) an important role is played by oxidative stress. Increased energy requirements during remyelination of axons and mitochondria failure is one of the causes of axonal degeneration and disability in MS. In this context, we analyzed to what extent the increase in purine catabolism is associated with selected blood lipophilic antioxidants and if there is any association with alterations in serum levels of coenzyme Q10. Blood serum and cerebrospinal fluid (CSF) samples from 42 patients with diagnosed MS and 34 noninflammatory neurologic patients (control group) were analyzed. Compared to control group, MS patients had significantly elevated values of all purine nucleotide metabolites, except adenosine. Serum lipophilic antioxidants γ-tocopherol, β-carotene, and coenzyme Q10 for the vast majority of MS patients were deficient or moved within the border of lower physiological values. Serum levels of TBARS, marker of lipid peroxidation, were increased by 81% in the MS patients. The results indicate that the deficit of lipophilic antioxidants in blood of MS patients may have a negative impact on bioenergetics of reparative remyelinating processes and promote neurodegeneration.
ISSN:2090-2654
2090-2662
DOI:10.1155/2014/759808