Metabolomic serum abnormalities in dogs with hepatopathies

Hepatopathies can cause major metabolic abnormalities in humans and animals. This study examined differences in serum metabolomic parameters and patterns in left-over serum samples from dogs with either congenital portosystemic shunts (cPSS, n = 24) or high serum liver enzyme activities (HLEA, n = 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-03, Vol.12 (1), p.5329-5329, Article 5329
Hauptverfasser: Imbery, Carolin A., Dieterle, Frank, Ottka, Claudia, Weber, Corinna, Schlotterbeck, Götz, Müller, Elisabeth, Lohi, Hannes, Giger, Urs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatopathies can cause major metabolic abnormalities in humans and animals. This study examined differences in serum metabolomic parameters and patterns in left-over serum samples from dogs with either congenital portosystemic shunts (cPSS, n = 24) or high serum liver enzyme activities (HLEA, n = 25) compared to control dogs (n = 64). A validated targeted proton nuclear magnetic resonance spectroscopy platform was used to assess 123 parameters. Principal component analysis of the serum metabolome demonstrated distinct clustering among individuals in each group, with the cluster of HLEA being broader compared to the other groups, presumably due to the wider spectrum of hepatic diseases represented in these samples. While younger and older adult control dogs had very similar metabolomic patterns and clusters, there were changes in many metabolites in the hepatopathy groups. Higher phenylalanine and tyrosine concentrations, lower branched-chained amino acids (BCAAs) concentrations, and altered fatty acid parameters were seen in cPSS dogs compared to controls. In contrast, dogs with HLEA had increased concentrations of BCAAs, phenylalanine, and various lipoproteins. Machine learning based solely on the metabolomics data showed excellent group classification, potentially identifying a novel tool to differentiate hepatopathies. The observed changes in metabolic parameters could provide invaluable insight into the pathophysiology, diagnosis, and prognosis of hepatopathies.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-09056-5