Specific Flavonoids and Their Biosynthetic Pathway in Scutellaria baicalensis

, is one of the most traditional medicinal plants in the Lamiaceae family, and has been widely used to treat liver and lung complaints and as a complementary cancer treatment in traditional Chinese medicine. The preparation from its roots, called "Huang Qin," is rich in specialized flavone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2022-03, Vol.13, p.866282-866282
Hauptverfasser: Pei, Tianlin, Yan, Mengxiao, Huang, Yanbo, Wei, Yukun, Martin, Cathie, Zhao, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:, is one of the most traditional medicinal plants in the Lamiaceae family, and has been widely used to treat liver and lung complaints and as a complementary cancer treatment in traditional Chinese medicine. The preparation from its roots, called "Huang Qin," is rich in specialized flavones such as baicalein, wogonin, and their glycosides which lack a 4'-hydroxyl group on the B ring (4'-deoxyflavones), with anti-tumor, antioxidant, and antiviral activities. Baicalein has recently been reported to inhibit the replication of the COVID-19 virus. These 4'-deoxyflavones are found only in the order Lamiales and were discovered in the genus , suggesting that a new metabolic pathway synthesizing 4'-deoxyflavones evolved recently in this genus. In this review, we focus on the class of 4'-deoxyflavones in and their pharmacological properties. We also describe the apparent evolutionary route taken by the genes encoding enzymes involved in the novel, root-specific, biosynthetic pathway for baicalein and wogonin, which provides insights into the evolution of specific flavone biosynthetic pathways in the mint family.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2022.866282