Neural encoding of instantaneous kinematics of eye-head gaze shifts in monkey superior Colliculus

The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2023-09, Vol.6 (1), p.927-17, Article 927
1. Verfasser: van Opstal, A. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is controversy about the role of the firing-rate dynamics of these neurons during saccades. In our earlier work, we proposed a simple quantitative model that explains how the recruited superior colliculus population may specify the detailed kinematics (trajectories and velocity profiles) of head-restrained saccadic eye movements. We here show that the same principles may apply to a wide range of saccadic eye-head gaze shifts with strongly varying kinematics, despite the substantial nonlinearities and redundancy in programming and execute rapid goal-directed eye-head gaze shifts to peripheral targets. Our findings could provide additional evidence for an important role of the superior colliculus in the optimal control of saccades. Based on recordings of superior colliculus (SC) activity from two head-unrestrained monkeys generating eye-head gaze shifts, a quantitative model explores the neural basis of eye-head gaze shifts, and may be useful in investigating the role of the SC in the optimal control of saccades.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-023-05305-z