Radioprotective Effect of Hesperidin: A Systematic Review

: Ionizing radiation (IR) has been of immense benefit to man, especially for medical purposes (diagnostic imaging and radiotherapy). However, the risks of toxicity in healthy normal cells, leading to cellular damage as well as early and late side effects, have been major drawbacks. The aim of this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicina (Kaunas, Lithuania) Lithuania), 2019-07, Vol.55 (7), p.370
Hauptverfasser: Musa, Ahmed Eleojo, Omyan, Gilnaz, Esmaely, Farid, Shabeeb, Dheyauldeen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:: Ionizing radiation (IR) has been of immense benefit to man, especially for medical purposes (diagnostic imaging and radiotherapy). However, the risks of toxicity in healthy normal cells, leading to cellular damage as well as early and late side effects, have been major drawbacks. The aim of this study was to evaluate the radioprotective effect of hesperidin against IR-induced damage. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) were applied in reporting this study. A search was conducted using the electronic databases PubMed, Scopus, Embase, Google Scholar, and www.ClinicalTrials.gov for information about completed or ongoing clinical trials. From our search results, 24 studies involving rats, mice, and cultured human and animal cells were included. An experimental case-control design was used in all studies. The studies showed that the administration of hesperidin reduced oxidative stress and inflammation in all investigated tissues. Furthermore, it increased 30-day and 60-day survival rates and protected against DNA damage. The best radioprotection was obtained when hesperidin was administered before irradiation. The results of the included studies support the antioxidant, anti-inflammatory, and antiapoptotic abilities of hesperidin as a potential radioprotective agent against IR-induced damage. We recommend future clinical trials for more insights.
ISSN:1648-9144
1010-660X
1648-9144
1010-660X
DOI:10.3390/medicina55070370