Bifurcation curves and exact multiplicity of positive solutions for Dirichlet problems with the Minkowski-curvature equation
In this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation { − ( u ′ 1 − u ′ 2 ) ′ = λ f ( u ) , x ∈ ( − L , L ) , u ( − L ) = 0 = u ( L ) , where λ and L are positive parameters, f ∈ C [ 0 , ∞ ) ∩ C 2 ( 0 , ∞ )...
Gespeichert in:
Veröffentlicht in: | Boundary value problems 2021-09, Vol.2021 (1), p.1-10, Article 81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the bifurcation curves and exact multiplicity of positive solutions of the one-dimensional Minkowski-curvature equation
{
−
(
u
′
1
−
u
′
2
)
′
=
λ
f
(
u
)
,
x
∈
(
−
L
,
L
)
,
u
(
−
L
)
=
0
=
u
(
L
)
,
where
λ
and
L
are positive parameters,
f
∈
C
[
0
,
∞
)
∩
C
2
(
0
,
∞
)
, and
f
(
u
)
>
0
for
0
<
u
<
L
. We give the precise description of the structure of the bifurcation curves and obtain the exact number of positive solutions of the above problem when
f
satisfies
f
″
(
u
)
>
0
and
u
f
′
(
u
)
≥
f
(
u
)
+
1
2
u
2
f
″
(
u
)
for
0
<
u
<
L
. In two different cases, we obtain that the above problem has zero, exactly one, or exactly two positive solutions according to different ranges of
λ
. The arguments are based upon a detailed analysis of the time map. |
---|---|
ISSN: | 1687-2770 1687-2762 1687-2770 |
DOI: | 10.1186/s13661-021-01558-x |