Neural-network variational quantum algorithm for simulating many-body dynamics

We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wave function ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys.Rev.Res 2021-05, Vol.3 (2), p.023095, Article 023095
Hauptverfasser: Lee, Chee Kong, Patil, Pranay, Zhang, Shengyu, Hsieh, Chang Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wave function ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost. Using a qubit recycling strategy, only one ancilla qubit is required to represent all the hidden spins in an RBM architecture. The variational algorithm is extended to open quantum systems by employing a stochastic Schrödinger equation approach. Numerical simulations of spin-lattice models demonstrate that our algorithm is capable of capturing the dynamics of closed and open quantum many-body systems with high accuracy without suffering from the vanishing gradient (or “barren plateau”) issue for the considered system sizes.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.3.023095