Neural-network variational quantum algorithm for simulating many-body dynamics
We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wave function ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measuremen...
Gespeichert in:
Veröffentlicht in: | Phys.Rev.Res 2021-05, Vol.3 (2), p.023095, Article 023095 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a neural-network variational quantum algorithm to simulate the time evolution of quantum many-body systems. Based on a modified restricted Boltzmann machine (RBM) wave function ansatz, the proposed algorithm can be efficiently implemented in near-term quantum computers with low measurement cost. Using a qubit recycling strategy, only one ancilla qubit is required to represent all the hidden spins in an RBM architecture. The variational algorithm is extended to open quantum systems by employing a stochastic Schrödinger equation approach. Numerical simulations of spin-lattice models demonstrate that our algorithm is capable of capturing the dynamics of closed and open quantum many-body systems with high accuracy without suffering from the vanishing gradient (or “barren plateau”) issue for the considered system sizes. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.3.023095 |