Edge of Chaos in Integro-Differential Model of Nerve Conduction

In this paper, we consider an integro-differential model of nerve conduction which presents the propagation of impulses in the nerve’s membranes. First, we approximate the original problem via cellular nonlinear networks (CNNs). The dynamics of the CNN model is investigated by means of local activit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-07, Vol.12 (13), p.2046
Hauptverfasser: Agarwal, Ravi, Domoshnitsky, Alexander, Slavova, Angela, Ignatov, Ventsislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an integro-differential model of nerve conduction which presents the propagation of impulses in the nerve’s membranes. First, we approximate the original problem via cellular nonlinear networks (CNNs). The dynamics of the CNN model is investigated by means of local activity theory. The edge of chaos domain of the parameter set is determined in the low-dimensional case. Computer simulations show the bifurcation diagram of the model and the dynamic behavior in the edge of chaos region. Moreover, stabilizing control is applied in order to stabilize the chaotic behavior of the model under consideration to the solutions related to the original behavior of the system.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12132046