3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures

Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned orga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2017-09, Vol.18 (9), p.1927
Hauptverfasser: Park, Chan Ho, Kim, Kyoung-Hwa, Lee, Yong-Moo, Giannobile, William V, Seol, Yang-Jo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms18091927