Real-Time 3D Map Building in a Mobile Robot System with Low-Bandwidth Communication

This paper presents a new 3D map building technique using a combination of 2D SLAM and 3D objects that can be implemented on relatively low-cost hardware in real-time. Recently, 3D visualization of the real world became increasingly important. In robotics, it is not only required for intelligent con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics (Basel) 2023-12, Vol.12 (6), p.157
Hauptverfasser: Junaedy, Alfin, Masuta, Hiroyuki, Sawai, Kei, Motoyoshi, Tatsuo, Takagi, Noboru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new 3D map building technique using a combination of 2D SLAM and 3D objects that can be implemented on relatively low-cost hardware in real-time. Recently, 3D visualization of the real world became increasingly important. In robotics, it is not only required for intelligent control, but also necessary for operators to provide intuitive visualization. SLAM is generally applied for this purpose, as it is considered a basic ability for truly autonomous robots. However, due to the increase in the amount of data, real-time processing is becoming a challenge. Therefore, in order to address this problem, we combine 2D data and 3D objects to create a new 3D map. The combination is simple yet robust based on rotation, translation, and clustering techniques. The proposed method was applied to a mobile robot system for indoor observation. The results show that real-time performance can be achieved by the system. Furthermore, we also combine high and low-bandwidth networks to deal with network problems that usually occur in wireless communication. Thus, robust wireless communication can be established, as it ensures that the missions can be continued even if the system loses the main network.
ISSN:2218-6581
2218-6581
DOI:10.3390/robotics12060157