Shared Environment and Genetics Shape the Gut Microbiome after Infant Adoption

The composition of the human gut microbiome is highly variable, and this variation has been repeatedly tied to variation in human health. However, the sources of microbial variation remain unclear, especially early in life. It is particularly important to understand sources of early life variation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mBio 2021-03, Vol.12 (2)
Hauptverfasser: Tavalire, Hannah F, Christie, Diana M, Leve, Leslie D, Ting, Nelson, Cresko, William A, Bohannan, Brendan J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The composition of the human gut microbiome is highly variable, and this variation has been repeatedly tied to variation in human health. However, the sources of microbial variation remain unclear, especially early in life. It is particularly important to understand sources of early life variation in the microbiome because the state of the microbiome in childhood can influence lifelong health. Here, we compared the gut microbiomes of children adopted in infancy to those of genetically unrelated children in the same household and genetically related children raised in other households. We observed that a shared home environment was the strongest predictor of overall microbiome similarity. Among those microbial taxa whose variation was significantly explained by our models, the abundance of a given taxon was more frequently explained by host genetic similarity (relatedness), while the presence of a given taxon was more dependent upon a shared home environment. This suggests that although the home environment may act as a species source pool for the gut microbiome in childhood, host genetic factors likely drive variation in microbial abundance once a species colonizes the gut. Our results demonstrate that the early life home environment can significantly alter the gut microbiome in childhood, potentially altering health outcomes or risk for adverse health outcomes. A better understanding of the drivers of gut microbiome variation during childhood could lead to more effective intervention strategies for overall health starting in early life.
ISSN:2150-7511
2150-7511
DOI:10.1128/mBio.00548-21