Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime

Breast cancer is a serious issue in today's medical science and for this reason, an accurate, as well as efficient detection technique of the breast cancer cell is urgent. Photonic crystal fiber (PCF) makes this process easier and unique since it has tremendous optical sensing capabilities. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensing and Bio-Sensing Research 2020-12, Vol.30, p.100388, Article 100388
Hauptverfasser: Bulbul, Abdullah Al-Mamun, Rahaman, Hasibur, Biswas, Sandipa, Hossain, Md Bellal, Nahid, Abdullah-Al
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer is a serious issue in today's medical science and for this reason, an accurate, as well as efficient detection technique of the breast cancer cell is urgent. Photonic crystal fiber (PCF) makes this process easier and unique since it has tremendous optical sensing capabilities. We represent a PCF sensor model for detecting the breast cancer cell where all the designed configurations are accomplished using finite element method and its different performances are examined in MATLAB. This PCF sensor is capable of operating at the 1.5–3.0 THz region. Simulation results namely higher relative sensitivity (92.2%), lower confinement loss of only 6.52 × 10−14 cm−1, lower effective material loss of only 0.0117 cm−1, lower effective area of approximately 9.4 × 104 μm2, a higher numerical aperture of 0.194, and birefringence demonstrate the efficiency of the proposed model. Besides, the simplicity in design also ensures the fabrication possibilities of this proposed sensor
ISSN:2214-1804
2214-1804
DOI:10.1016/j.sbsr.2020.100388