A Super-Resolution and Fusion Approach to Enhancing Hyperspectral Images

High resolution (HR) hyperspectral (HS) images have found widespread applications in terrestrial remote sensing applications, including vegetation monitoring, military surveillance and reconnaissance, fire damage assessment, and many others. They also find applications in planetary missions such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2018-09, Vol.10 (9), p.1416
Hauptverfasser: Kwan, Chiman, Choi, Joon Hee, Chan, Stanley H., Zhou, Jin, Budavari, Bence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High resolution (HR) hyperspectral (HS) images have found widespread applications in terrestrial remote sensing applications, including vegetation monitoring, military surveillance and reconnaissance, fire damage assessment, and many others. They also find applications in planetary missions such as Mars surface characterization. However, resolutions of most HS imagers are limited to tens of meters. Existing resolution enhancement techniques either require additional multispectral (MS) band images or use a panchromatic (pan) band image. The former poses hardware challenges, whereas the latter may have limited performance. In this paper, we present a new resolution enhancement algorithm for HS images that only requires an HR color image and a low resolution (LR) HS image cube. Our approach integrates two newly developed techniques: (1) A hybrid color mapping (HCM) algorithm, and (2) A Plug-and-Play algorithm for single image super-resolution. Comprehensive experiments (objective (five performance metrics), subjective (synthesized fused images in multiple spectral ranges), and pixel clustering) using real HS images and comparative studies with 20 representative algorithms in the literature were conducted to validate and evaluate the proposed method. Results demonstrated that the new algorithm is very promising.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10091416