New Bounds on the Triple Roman Domination Number of Graphs

In this paper, we derive sharp upper and lower bounds on the sum γ3RG+γ3RG¯ and product γ3RGγ3RG¯, where G¯ is the complement of graph G. We also show that for each tree T of order n≥2, γ3RT≤3n+sT/2 and γ3RT≥⌈4nT+2−ℓT/3⌉, where sT and ℓT are the number of support vertices and leaves of T....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2022, Vol.2022 (1)
Hauptverfasser: Hajjari, M., Ahangar, H. Abdollahzadeh, Khoeilar, R., Shao, Z., Sheikholeslami, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive sharp upper and lower bounds on the sum γ3RG+γ3RG¯ and product γ3RGγ3RG¯, where G¯ is the complement of graph G. We also show that for each tree T of order n≥2, γ3RT≤3n+sT/2 and γ3RT≥⌈4nT+2−ℓT/3⌉, where sT and ℓT are the number of support vertices and leaves of T.
ISSN:2314-4629
2314-4785
DOI:10.1155/2022/9992618